Tsetse fly genome decoded, may offer target for sleeping sickness prevention and therapies

Public-health workers are one step closer to stamping out a debilitating and potentially fatal disease known as sleeping sickness following the sequence of its carrier, the tsetse fly. The 366-million-base sequence of Glossina morsitans morsitans offers clues to the insect’s diet, vision and reproductive strategies, researchers say.

“This really accelerates our ability to do basic research on this fly”, says lead author Geoffrey Attardo of the Yale School of Public Health in New Haven, Connecticut. The work was published today in Science1.

Tsetse flies carry protozoan parasites that cause sleeping sickness, also known as trypanosomiasis, in humans, and a similar disease (nagana) in livestock, in sub-Saharan Africa. Control measures such as trapping and killing the flies have helped to bring down the number of cases, but there is no vaccination, and an estimated 70 million people remain at risk of infection. The decoding of the genome will help researchers to hone in on specific characteristics of the fly and potentially lead to new or more effective ways to control the fly population, says Attardo.

Read the full, original story: Decoded fly genome offers clues about sleeping sickness

{{ reviewsTotal }}{{ options.labels.singularReviewCountLabel }}
{{ reviewsTotal }}{{ options.labels.pluralReviewCountLabel }}
{{ options.labels.newReviewButton }}
{{ userData.canReview.message }}
screenshot at  pm

Are pesticide residues on food something to worry about?

In 1962, Rachel Carson’s Silent Spring drew attention to pesticides and their possible dangers to humans, birds, mammals and the ...
glp menu logo outlined

Newsletter Subscription

* indicates required
Email Lists
glp menu logo outlined

Get news on human & agricultural genetics and biotechnology delivered to your inbox.