New type of stem cell challenges understanding of pluripotency

Researchers from Canada’s Lunenfeld-Tanenbaum Research Institute and their international colleagues have uncovered a new type of pluripotent mouse stem cell—the “F-class” cell—through use of a somatic cell reprogramming approach. An F-class cell is able to differentiate into all three embryonic precursor tissues, yet is phenotypically and molecularly different from previously characterized induced pluripotent stem cells (iPSCs) made from somatic cells. These F-class cells proliferate more quickly than other stem cells in vitro, and are characteristically low-adhesion, giving them a fuzzy appearance. The results are published in Nature.

“What I find particularly exciting is that this opens up the idea that there may be different kinds of pluripotent stem cells,” said Paul Knoepfler, a stem cell biologist at the University of California, Davis, who was not involved in the work.

Juan Carlos Izpisua Belmonte, a developmental biologist at the Salk Institute for Biological Studies in La Jolla, California, who penned an accompanying editorial, agreed. “These studies and our understanding of embryo development teach us that we shouldn’t assume the known pluripotent stem cells represent the whole spectrum of pluripotency. Rather, there exists a multitude of pluripotent states or novel pluripotent states can be engineered through cellular reprograming,” Belmonte told The Scientist in an e-mail.

Read full, original article: New Stem Cell State

{{ reviewsTotal }}{{ options.labels.singularReviewCountLabel }}
{{ reviewsTotal }}{{ options.labels.pluralReviewCountLabel }}
{{ options.labels.newReviewButton }}
{{ userData.canReview.message }}
screenshot at  pm

Are pesticide residues on food something to worry about?

In 1962, Rachel Carson’s Silent Spring drew attention to pesticides and their possible dangers to humans, birds, mammals and the ...
glp menu logo outlined

Newsletter Subscription

* indicates required
Email Lists
glp menu logo outlined

Get news on human & agricultural genetics and biotechnology delivered to your inbox.