CRISPR-based gene therapy may provide cure to Duchenne muscular dystrophy

Print Friendly, PDF & Email

The GLP aggregated and excerpted this blog/article to reflect the diversity of news, opinion and analysis.

In an amazing, salutary coincidence, three independent research groups recently reported progress utilizing gene modification approaches to reducing the muscular dysfunction characteristic of sex-linked Duchenne-type Muscular Dystrophy, the most common and severe form of the disease.

The current studies were done on mice, but in this instance mouse and human gene mutations are quite similar, both biochemically and pathophysiologically re: the muscular dysfunction resulting from the genetic aberration.

Duchenne muscular dystrophy (DMD) is the most common fatal genetic disorder diagnosed in childhood, affecting approximately one in every 3,500 live male births (about 20,000 new cases each year worldwide). Because the Duchenne gene is found on the X-chromosome, it primarily affects boys; however, it occurs across all races and cultures.

The new studies used a groundbreaking gene-altering/modification technique known as CRISPR/Cas-9 (clustered regularly interspaced short palindromic repeats), which is analogous genetically to the “find and replace” function on document manipulation. The scientists attached dystrophin-specific CRISPR/Cas-9 technology to a virus (“AAV,” adeno-associated virus) and used the virus as a carrier to transport the corrective gene modifier to ailing muscle cells in mice.

Read full, original post: Progress on Gene Modification Rx for Muscular Dystrophy

Outbreak Daily Digest
Biotech Facts & Fallacies
GLP Podcasts
Infographic: Trending green and going great — Every state in the US seeing decreased cases of COVID

Infographic: Trending green and going great — Every state in the US seeing decreased cases of COVID

The U.S. averaged fewer than 40,000 new cases per day over the past week. That’s a 21% improvement over the ...
News on human & agricultural genetics and biotechnology delivered to your inbox.
glp menu logo outlined

Newsletter Subscription

* indicates required
Email Lists