Synthetic bacteria programmed to deliver cancer drugs inside body directly to tumor

The GLP aggregated and excerpted this blog/article to reflect the diversity of news, opinion and analysis.

A synthetic genetic circuit programmed into an attenuated Salmonella enterica subspecies can be used to systemically deliver an anti-tumor toxin into mice with cancer. The circuit allows the bacterial cells inside a tumor to synchronously self-destruct by lysis, releasing the toxin directly in the tumor. The treatment of mice with the engineered bacteria is described by researchers at the University of California, San Diego (UCSD), today (July 20) in Nature, pointing to a way to harness bacteria for cancer drug delivery.

For the present study, the team modified the circuit to include a gene expressing an anti-tumor toxin—haemolysin E, which accumulates inside the cell—and a gene for a bacteriophage protein that lyses bacteria. Once the AHL reaches a critical level, the bacteriophage lysis protein is expressed, kick-starting a negative feedback loop, allowing the cells to go through a cycle of growth followed by lysis when a population threshold is reached, leaving behind only a few surviving cells.

Read full, original post: Arming Synthetic Bacteria Against Cancer

ADVERTISEMENT
Outbreak Daily Digest
Biotech Facts & Fallacies
GLP Podcasts
Infographic: Deaths from COVID-19 are far higher than reported estimates

Infographic: Deaths from COVID-19 are far higher than reported estimates

More than 2.8 million people have lost their lives due to the pandemic, according to a Wall Street Journal analysis ...
News on human & agricultural genetics and biotechnology delivered to your inbox.
glp menu logo outlined

Newsletter Subscription

Optional. Mail on special occasions.
Send this to a friend