Cystic fibrosis, sickle-cell anemia could be corrected in embryos with new CRISPR variant

| March 8, 2017
dn
This article or excerpt is included in the GLP’s daily curated selection of ideologically diverse news, opinion and analysis of biotechnology innovation.

Since the discovery of the genome-editing tool CRISPR/Cas9, scientists have been looking to utilize the technology to make a significant impact on correcting genetic diseases. Technical challenges have made it difficult to use this method to correct disorders that are caused by single-nucleotide mutations, such as cystic fibrosis, sickle-cell anemia, Huntington’s disease, and phenylketonuria. … [Researchers] have just used a variation of CRISPR/Cas9 to produce mice with single-nucleotide differences. The findings from this new study were published recently in Nature Biotechnology in an article entitled “Highly Efficient RNA-Guided Base Editing in Mouse Embryos.”

The most frequently used CRISPR/Cas9 technique works by cutting around the faulty nucleotide in both strands of the DNA and cuts out a small part of DNA. In the current study, the investigators used a variation of the Cas9 protein (nickase Cas9, or nCas9) fused with an enzyme called cytidine deaminase, which can substitute one nucleotide into another—generating single-nucleotide substitutions without DNA deletions.

“The next goal is to correct a genetic defect in animals. Ultimately, this technique may allow gene correction in human embryos,” [remarked senior study investigator Jin-Soo Kim].

The GLP aggregated and excerpted this blog/article to reflect the diversity of news, opinion, and analysis. Read full, original post: An Efficient Single-Nucleotide-Editing CRISPR

Outbreak
Outbreak Daily Digest
Biotech Facts & Fallacies
Talking Biotech
Genetics Unzipped
a a b b a f ac a

Video: Death by COVID: The projected grim toll in historical context

The latest statistics, as of July 10, show COVID-19-related deaths in U.S. are just under 1,000 per day nationally, which is ...
mag insects image superjumbo v

Disaster interrupted: Which farming system better preserves insect populations: Organic or conventional?

A three-year run of fragmentary Armageddon-like studies had primed the journalism pumps and settled the media framing about the future ...
dead bee desolate city

Are we facing an ‘Insect Apocalypse’ caused by ‘intensive, industrial’ farming and agricultural chemicals? The media say yes; Science says ‘no’

The media call it the “Insect Apocalypse”. In the past three years, the phrase has become an accepted truth of ...
types of oak trees

Infographic: Power of evolution? How oak trees came to dominate North American forests

Over the course of some 56 million years, oaks, which all belong to the genus Quercus, evolved from a single undifferentiated ...
biotechnology worker x

Can GMOs rescue threatened plants and crops?

Some scientists and ecologists argue that humans are in the midst of an "extinction crisis" — the sixth wave of ...
food globe x

Are GMOs necessary to feed the world?

Experts estimate that agricultural production needs to roughly double in the coming decades. How can that be achieved? ...
eating gmo corn on the cob x

Are GMOs safe?

In 2015, 15 scientists and activists issued a statement, "No Scientific consensus on GMO safety," in the journal Environmental Sciences ...
Screen Shot at PM

Charles Benbrook: Agricultural economist and consultant for the organic industry and anti-biotechnology advocacy groups

Independent scientists rip Benbrook's co-authored commentary in New England Journal calling for reassessment of dangers of all GMO crops and herbicides ...
Screen Shot at PM

ETC Group: ‘Extreme’ biotechnology critic campaigns against synthetic biology and other forms of ‘extreme genetic engineering’

The ETC Group is an international environmental non-governmental organization (NGO) based in Canada whose stated purpose is to monitor "the impact of emerging technologies and ...
Share via
News on human & agricultural genetics and biotechnology delivered to your inbox.
Optional. Mail on special occasions.
Send this to a friend