Pursuing ‘organic gene therapy’ for sickle cell anemia and beta thalassemia

f image
Image credit: Brad Nettles

Scientists in Australia have solved a 50-year-old mystery that could lead to the development of new gene therapies for blood disorders such as sickle cell anemia and β-thalassemia. The team, led by University of New South Wales (UNSW) professor Merlin Crossley, Ph.D., has identified the gene-control mechanism that allows some individuals with these blood disorders to keep producing a fetal form of human hemoglobin, which naturally compensates for the lack of adult hemoglobin and so reduces disease severity. The researchers also used CRISPR/Cas9 gene editing to introduce these naturally beneficial mutations into cultured blood cells and boost production of fetal hemoglobin directly.

“Our new approach can be seen as a forerunner to ‘organic gene therapy’ for a range of common inherited blood disorders including β-thalassemia and sickle cell anemia,” says Dr. Crossley, who is UNSW deputy vice-chancellor academic. “It is organic because no new DNA is introduced into the cells; rather we engineer in naturally occurring, benign mutations that are known to be beneficial to people with these conditions. It should prove to be a safe and effective therapy, although more research would be needed to scale the processes up into effective treatments.”

The team reports its findings in a paper published [April 2] in Nature Genetics, which is entitled  “Natural Regulatory Mutations Elevate the Fetal Globin Gene via Disruption of BCL11A and ZBTB7A Binding.”

Read full, original post: CRISPR Use Could Lead to “Organic” Gene Therapies for Blood Disorders

{{ reviewsTotal }}{{ options.labels.singularReviewCountLabel }}
{{ reviewsTotal }}{{ options.labels.pluralReviewCountLabel }}
{{ options.labels.newReviewButton }}
{{ userData.canReview.message }}
screenshot at  pm

Are pesticide residues on food something to worry about?

In 1962, Rachel Carson’s Silent Spring drew attention to pesticides and their possible dangers to humans, birds, mammals and the ...
glp menu logo outlined

Newsletter Subscription

* indicates required
Email Lists
glp menu logo outlined

Get news on human & agricultural genetics and biotechnology delivered to your inbox.