Viewpoint: By ‘shutting the door’ on crop gene editing, Europe shows its biotech regulations deeply flawed


The European Court of Justice has made an important ruling on genetically modified crops. Since 2003, new crop varieties produced by genetic modification have had to be assessed for their risks to the environment and human and animal health before they can be farmed in the European Union. The court has now decided that genetic modification includes any technique that induces genetic changes “in a way that does not occur naturally”. This includes new genome editing techniques such as CRISPR/Cas9, but also approaches that have been used in plant breeding since the 1960s.

Some scientists have criticised the court for “shutting the door” on new technologies that could benefit human health and the environment. This is certainly a concern. The ruling will discourage the use of genome editing that could bring significant environmental benefits by making it more expensive for such such crops to clear the necessary regulatory processes.

But the main problem illustrated by this ruling is the deep logical flaw in the whole regulatory approach. Plants that have been bred in more traditional ways, which could have just as serious health or environmental impacts, will continue to be exempt from regulation. Focusing on how a new crop is produced – rather than the new characteristics or agricultural practices it brings – will inevitably result in wholly inadequate protection for the environment and consumers.

Every new crop variety is genetically different from its predecessors. A lot of genetic variation can arise naturally from errors in DNA copying, mutations caused by environmental factors, cross breeding with wild relatives, viruses and many other sources. All this variation is excluded from the EU definition of GM.

To increase genetic diversity and generally speed things up, scientists can induce mutations deliberately. Random mutagenesis – purposefully encouraging genetic mutations, for example with radiation – has been used on crops since the 1960s. It has since become possible to add specific new genes, sourced from the same or different species. And, even more recently, genome editing techniques have been developed that allow scientists to alter selected existing genes. These more recent approaches are becoming ever more useful as we build up our understanding of which genes do what.

Follow the latest news and policy debates on agricultural biotech and biomedicine? Subscribe to our newsletter.

All these techniques can be used to introduce new traits into a crop variety, for example to make a plant resistant to herbicides. The new court ruling came about because a group of farming organisations who were worried about the impact of herbicide resistant crops argued they should be regulated regardless of how they were developed.

Related article:  Buy local; save the bees; avoid GMOs: Americans' top food-related causes

This seems to me entirely reasonable. There are of plenty of arguments and counterarguments about the risks and benefits of this approach to weed control – and it is important to assess these before introducing a new herbicide resistant crop. None of these arguments have anything to do with how the crop was produced.

Yet the court ruling means that herbicide resistant crops produced through conventional breeding can be used freely, while crops produced using newer approaches must be subjected to intense scrutiny. So the farming groups might be happy that a new generation of herbicide resistant crops will have to be extensively assessed for their environmental and health impacts. But herbicide resistant crops produced by traditional methods, which raise identical concerns, will remain exempt from these regulations.

Natural’s not in it

This highlights the central problem with the EU regulations on new crop varieties. Anything that could occur naturally is exempt from scrutiny. Yet drawing a line between the natural and artificial is difficult to say the least. After thousands of years of careful human intervention, most “natural” crops look nothing like their wild ancestor. They have many characteristics that mean they would not last more than a few generations if they had to compete in the wild.

One of the reasons we have spent so long breeding them is that many natural plants carry serious risks. Very few people would say to their children: “Go into the woods and eat anything you can find. It’s all natural so it must be good for you.” The distinction between natural and artificial is both contrived and not relevant when it comes to environmental and health impact assessment.

We should assess new crop varieties on the traits they are supposed to deliver, not on how those traits were introduced. The system needs to be proportional and risk-based. This should of course include consideration of the unintended effects of whatever genetic improvement process was used. Instead we spend years debating whether or not a new technique counts as genetic modification or not. That this is even a relevant question lays bare the flaws in our current approach.

Ottoline Leyser is the Director of the Sainsbury Laboratory, University of Cambridge. Follow her on Twitter @OttolineLeyser

This article was originally published at The Conversation as GM crop ruling shows why the EU’s laws are wholly inadequate and has been republished here with permission.

Outbreak Daily Digest
Biotech Facts & Fallacies
Talking Biotech
Genetics Unzipped
ft covidresponseus feature

Video: Viewpoint: The US wrote the global playbook on the coronavirus and then ignored it

A year ago, the United States was regarded as the country best prepared for a pandemic. Our government had spent ...
mag insects image superjumbo v

Disaster interrupted: Which farming system better preserves insect populations: Organic or conventional?

A three-year run of fragmentary Armageddon-like studies had primed the journalism pumps and settled the media framing about the future ...
dead bee desolate city

Are we facing an ‘Insect Apocalypse’ caused by ‘intensive, industrial’ farming and agricultural chemicals? The media say yes; Science says ‘no’

The media call it the “Insect Apocalypse”. In the past three years, the phrase has become an accepted truth of ...
globalmethanebudget globalcarbonproject cropped x

Infographic: Cows cause climate change? Agriculture scientist says ‘belching bovines’ get too much blame

A recent interview by Caroline Stocks, a UK journalist who writes about food, agriculture and the environment, of air quality ...
organic hillside sweet corn x

Organic v conventional using GMOs: Which is the more sustainable farming?

Many consumers spend more for organic food to avoid genetically modified products in part because they believe that “industrial agriculture” ...
benjamin franklin x

Are most GMO safety studies funded by industry?

The assertion that biotech companies do the research and the government just signs off on it is false ...
gmo corn field x

Do GMO Bt (insect-resistant) crops pose a threat to human health or the environment?

Bt is a bacterium found organically in the soil. It is extremely effective in repelling or killing target insects but ...

Environmental Working Group: EWG challenges safety of GMOs, food pesticide residues

Known by some as the "Environmental Worrying Group," EWG lobbies for tighter GMO legislation and famously puts out annual "dirty dozen" list of fruits and ...
m hansen

Michael Hansen: Architect of Consumers Union ongoing anti-GMO campaign

Michael K. Hansen (born 1956) is thought by critics to be the prime mover behind the ongoing campaign against agricultural biotechnology at Consumer Reports. He is an ...
News on human & agricultural genetics and biotechnology delivered to your inbox.
Optional. Mail on special occasions.
Send this to a friend