Video: Building a bionic prosthetic leg that ‘thinks for itself’

screen shot at pm
Alec McMorris, a high school football coach, received the bionic limb. Image: Seeflective

It’s no question that researchers, doctors, and engineers want to design more effective robotic limbs that can help paralyzed and amputees live not only more comfortably, but more normal lives. The question is – how?

What if instead of relying on our body to control the technology, we decided to let the technology think for itself? That’s exactly what Dr. Tommaso Lenzi and his researchers at University of Utah’s Bionic Engineering Lab decided to bring to life. And their AI-powered bionic leg will change the future of advanced prosthetics.


To develop the robotic leg you see today, he made two major fundamental changes.

Related article:  Why it's critical for AI to be given a good dose of common sense

1 – Dr. Lenzi decided to create a powered prosthesis that is even lighter than a biological human leg. His leg is nearly half the weight of any comparable powered prosthesis.

2 – Where most prosthetics are controlled by the user – either manually or through sensory detecting nerve cuffs – Dr. Lenzi is letting the leg think for itself.

Essentially, Dr. Lenzi’s bionic leg is a lightweight, autonomous device that works symbiotically with its user by reading their normal body movements.


Read full, original post:

Outbreak Daily Digest
Biotech Facts & Fallacies
GLP Podcasts
Infographic: Here’s where GM crops are grown around the world today

Infographic: Here’s where GM crops are grown around the world today

Do you know where biotech crops are grown in the world? This updated ISAAA infographics show where biotech crops were ...
News on human & agricultural genetics and biotechnology delivered to your inbox.

We Noticed You Have An Ad Blocker On.

Can you help fund the GLP? We're a nonprofit, so it's tax-deductible.

glp menu logo outlined

Newsletter Subscription

Optional. Mail on special occasions.
Send this to a friend