Some animal species never get cancer. What can we learn from them?

Print Friendly, PDF & Email
Image credit: Mortimer et al.
Doctors and scientists have gotten increasingly good at detecting cancer early and treating it effectively. Our level of understanding of molecular mechanisms has exponentially increased in the past decade, spurred on by advances in biotechnology. Therapies are starting to be tailored specifically to the genetic makeup of a single patient’s disease, rather than a “one size fits all” approach.

10-31-2018 Control_panel_for_X-ray_therapy,_Marie_Curie_Hospital,_1934_Wellcome_L0037366
A new approach is needed. Image credit: Wikimedia Commons

However, one area of research seems to be falling by the wayside, and that’s cancer prevention.

In the world of cancer research, prevention is shrouded in a hidden controversy. It isn’t controversial in the sense that researchers get in fights over it, but rather harbors mistrust and doubts that taint the field.

The main controversy stems from the scientific certainty that if you’re going to get cancer, you’re going to get it. The reason for this boils down to the fact that cancer is a genetic disease, and right now we can’t physically change the human genome. While there are some ways to reduce the chance of mutations – such as not smoking, which is the number one entirely preventable cause of cancer, healthy diet, exercise, and avoiding pollution – it is (as of now) entirely out of our control.

Naturally, these trials just led to the assumption that the agent targeted (β-carotene) was wrong. Trials were launched on multiple other targets including folatevitamin E , and retinols and retinoids (synthetic versions of Vitamin A, often used for skin treatments). None of these substances proved to have any efficacy in reducing cancer risk and in some cases (following in β-carotene’s footsteps) even increased cancer incidences. None of these substances could manipulate the genetics in our favor.

10-31-2018 Carrot_2
Not enough to prevent cancer. Image credit: Wikimedia commons

Outside of failed trials, an important factor influencing the opinion of chemoprevention is money (and the related time). There are plenty of conspiracy theorists out there who believe big pharma is sequestering some magic drug that will cure all forms of cancer (let me stress quickly that there is no cure for cancer). However, lots of people and lots of companies do make quite a bit of money from cancer, particularly when it comes to drugs to treat disease. Yet government agencies, such as the National Institutes of Health, recognize the value of prevention studies and are still willing to fund them. The National Cancer Institute even has a separate cancer prevention department and a National Cancer Prevention Fund (NCPF) has been in effect since 1997.

The main issue with money and chemoprevention are not evil corporations and greedy executives, but rather the studies themselves. Even if a magic preventative therapy is discovered, the trials to determine the efficacy and effectiveness would take decades. Studies that tend to take a lot of time also take a lot of money and resources, which many funding agencies will shy away from. It’s unsurprising, as quicker results are more favorable for many reasons. It’s an uphill battle for those wishing to study cancer prevention.

Related article:  'Low-emission' cows that produce less methane gas take center stage amid growing climate change fears

In the lab, mice and rats are used to model cancer mechanisms and test possible cancer drugs because they are really good at developing cancer. However, when it comes to studying cancer resistance, this propensity to develop cancer is not beneficial. In recent years, scientists have been turning to more non-conventional model organisms to study prevention.

There are examples of long-lived mammals who simply never develop cancer. These include horses, cows, whales, bats, elephants, blind mole rats, and (my personal favorite) naked mole rats. Something in their genetics or their biology is hardwired to fight against cancer. One of the main goals of preventative research is to develop a therapeutic strategy that is effective, efficient, and non-toxic. What better way to achieve this goal than to look at species who have evolved natural, effective strategies to combat cancer?

10-31-2018 43339144960_9b547d3ebf_z
The picture of health. Image credit: Yannick Francioli on Flickr

Most of these examples are wild animals, so it’s no surprise that it has taken this long to turn to them for answers. Through increasing studies on these unusual models, we have learned things like: elephants have 19 extra copies of the p53 tumor suppressor (perhaps the most important known cancer-fighting gene), some of which are completely new forms of p53 and are under the strict control of an adapted pseudogene (an imperfect gene copy); whales show an increase in genes that cause cells to accumulate mutations at a vastly slower rate; and blind mole rats have increased levels of high molecular mass hyaluronan (HMM-HA, which is a molecule found surrounding cells) that contributes to a more rigid structure of the matrix surrounding cells that may restrict tumor growth – similar to mechanisms that naked mole rats display.

Follow the latest news and policy debates on agricultural biotech and biomedicine? Subscribe to our newsletter.

From these examples, it’s becoming clear that the secret of cancer resistance lies in how the genome is maintained. Cancer is a genetic disease brought on by the accumulation of mutations. These species have ways to either prevent accumulation of mutations, prevent mutations from occurring in the first place, or restrict cancerous growth, all of which seem to be under a higher level of control than humans. While humans do have some level of control, it is unmatched with that of these unusual animals.

Then I was presented with an opportunity to work with naked mole rats for my PhD project. I jumped at the chance, mainly cherishing the novelty of working with a unique model system. The idea for the project is that naked mole rats appear to never develop cancer – but can we force them to? Or are their genetics and cancer fighting mechanisms so great that even genetic manipulation can’t mess with them? From my hours now spent reading papers on naked mole rats and other cancer-resistant animals like them, I can see some of the promise that they show. I see the hope of harnessing some of these mechanisms and applying them to humans, to save pain and heartache for numerous families and individuals.

The molecular biology of humans is amazing. The level of coordination of thousands of genes, millions of proteins, and a billion tiny mechanisms that occur minute-to-minute is astounding. For years, these mechanisms persist, keeping us alive and well, functioning almost perfectly. When it comes down to it, the amount of mutations the human body can work with before succumbing to cancer is almost shocking. We can work around issues pretty well, but in the end, cancer comes, and when it does it’s difficult to fully eliminate. The promise of these new model systems and emerging resistance mechanisms is quietly crushing the controversy surrounding chemoprevention studies and support for the field is rising.

Cancer prevention is a difficult pursuit, but it is not a futile one.

Alyssa Shepard is a science writer and a PhD student studying cancer resistance mechanisms in naked mole rats at the Scripps Research Institute.

A version of this article was originally published on Massive’s website asWe can detect and treat it better than ever, but preventing cancer is still far out of reachand has been republished here with permission.

Outbreak Featured
Infographic: Growing human embryos — How long should researchers watch human development play out in a dish?

Infographic: Growing human embryos — How long should researchers watch human development play out in a dish?

In May, the International Society for Stem Cell Research (ISSCR) released new guidelines that relaxed the 14-day rule, taking away ...
Are GMOs and pesticides threatening bees?

Are GMOs and pesticides threatening bees?

First introduced in 1995, neonicotinoids ...
glp menu logo outlined

Newsletter Subscription

* indicates required
Email Lists
glp menu logo outlined

Get news on human & agricultural genetics and biotechnology delivered to your inbox.