The GLP is committed to full transparency. Download and review our just-released 2019 Annual Report.

Biopesticide spinosad, popular in organic farming, may harm honeybees, study shows

Bees have experienced substantial colony losses, which were often associated with insecticides. Besides synthetic insecticides biological compounds such as spinosad are used in agriculture and organic farming against insect pests. However, potential adverse effect at sublethal concentrations to pollinators are poorly known. Here we aimed to determine potential adverse outcome pathways of spinosad and to identify molecular effects by investigating transcriptional alterations in the brain of honey bees.

[Editor’s note: Some environmental activists allege that synthetic pesticides, particularly neonicotinoid insecticides, harm honeybees, though there is little evidence to support that claim. Much less attention has been paid to the possible impact of natural pesticides like spinosad on bees.]

We experimentally exposed bees to three sublethal concentrations, 0.05, 0.5 and 5 ng spinosad/bee, and assessed transcriptional alterations of target genes. Additionally, we evaluated whether spinosad-induced transcriptional alterations were influenced by the time of the year. In April, alterations were most pronounced after 24 h exposure, while in June alterations were similar but occurred mostly after 48 h. In July, expressional alterations were lower.

Related article:  If US banned neonicotinoid insecticides, pesticide use could increase, posing threat to humans and pollinators, study suggests

Down-regulation of genes encoding acetylcholine receptors, enzymes involved in oxidative phosphorylation (cox5a, ndufb-7 and cox17), cytochrome P450 dependent monooxygenases (cyp9q1, cyp9q2 and cyp9q3) and insulin-like peptide-1 were among the most significant transcriptional alterations. This suggests adverse effects of spinosad to energy production and metabolism and thus negative consequences on foraging. Together, our study indicates that spinosad causes adverse effects at environmentally realistic concentrations and may harm bee populations.

Read full, original article: Biopesticide spinosad induces transcriptional alterations in genes associated with energy production in honey bees (Apis mellifera) at sublethal concentrations (Behind paywall)

The GLP aggregated and excerpted this article to reflect the diversity of news, opinion, and analysis. Click the link above to read the full, original article.
News on human & agricultural genetics and biotechnology delivered to your inbox.
Optional. Mail on special occasions.

Send this to a friend