How do ribosomes translate RNA into proteins?

The following is an excerpt.

Machines can be large and complex. Take a car, for instance. It has an engine that allows it perform the task of driving us humans from one place to another. A single misstep or damage to one of many car parts and the machine would stop working all together. For example, a rusted car engine would prevent the car from starting, let alone moving it forward. Now consider this machine idea in biology. Just like their man-made counterparts, biological machines can be complex and large, and can perform tasks with tremendous power. ATP Synthase, for example, is a large protein machine in cells that functions by rotating itself to power its ATP (energy) molecule production. Similarly, we have ribosomes as the protein-making (translating) machines in cells. Either functioning freely in the cytoplasm or embedded within the membranes in compartments of the cell, these machines work tirelessly to make new proteins. Ribosomes in the cytoplasm of the cell are like cars, driving along the messenger RNA strand (mRNA), trailing the growing protein chain with it until it reach its final destination stop (the stop genetic code on mRNA) to finish protein synthesis (2). Found in all living organisms that make proteins, how does this machine achieve its mighty feat of a role?

View the original article here: Scicurious Guest Writer! Ribosomes: ‘Prepare to be translated’

Outbreak
Outbreak Daily Digest
Biotech Facts & Fallacies
Talking Biotech
Genetics Unzipped
Infographic: What are mRNA COVID-19 vaccines and how do they work?

Infographic: What are mRNA COVID-19 vaccines and how do they work?

As of 1 December 2020, thirteen vaccines have reached the final stage of testing: where they are being given to ...
favicon

Environmental Working Group: EWG challenges safety of GMOs, food pesticide residues

Known by some as the "Environmental Worrying Group," EWG lobbies ...
m hansen

Michael Hansen: Architect of Consumers Union ongoing anti-GMO campaign

Michael K. Hansen (born 1956) is thought by critics to be ...
News on human & agricultural genetics and biotechnology delivered to your inbox.
glp menu logo outlined

Newsletter Subscription

Optional. Mail on special occasions.
Send this to a friend