The GLP is committed to full transparency. Download and review our 2019 Annual Report

Addressing ethical questions in pregnancy, genetic disease and baby traits

This article or excerpt is included in the GLP’s daily curated selection of ideologically diverse news, opinion and analysis of biotechnology innovation.

When Kira Walker was born, on June 13, 2013, her parents and doctors knew she might have health issues. Her mother, a recovering heroin addict, had taken methadone to manage her addiction throughout the pregnancy. Kira was admitted to the neonatal intensive care unit (NICU) at the Research Medical Center in Kansas City, Missouri, where she was born, so that doctors could watch for withdrawal symptoms. That’s why they happened to notice she had a different and equally serious problem: abnormally low blood sugar.

At first, Kira’s doctors could control her blood sugar with cortisol, and she was allowed to go home. But at her one-month checkup, her blood sugar was so low that the glucose meter couldn’t initially read it. Kira was admitted to nearby Children’s Mercy Hospital in Kansas City, where doctors ran a slew of tests to determine the cause. No luck. With her blood sugar dropping precipitously, Kira would go limp at times. And every day that the level continued to yo-yo brought her closer to brain damage. No one knew what to do.

Kira was exceptionally lucky to have landed at Children’s Mercy. The hospital is one of a handful in the U.S. that can sequence babies’ whole genomes in just a few days—a feat that two decades ago would have taken 10 years. By sequencing her genome, doctors might uncover a genetic clue to her condition and suggest a therapy. They took samples of blood from Kira and her parents on a Thursday and sent them to the hospital’s lab for sequencing. By Sunday evening, they had the results.

Doctors at Children’s Mercy estimate that as many as one third of all newborns admitted to NICUs in the U.S. suffer from genetic diseases like Kira’s—conditions caused by single-gene mutations that are difficult, if not impossible, to diagnose with standard clinical tests. Worse, patients often have to wait four to six weeks for results, time that many sick babies do not have. Certainly, some of the more common genetic diseases are well-known and easy to identify—I’m pregnant, and early in my first trimester I took a blood test to determine if I harbored mutations associated with more than 100 of them. (I don’t.) But there are now more than 4,000 known genetic diseases caused by single-gene mutations.

Read the full, original story: Infant possibilities

News on human & agricultural genetics and biotechnology delivered to your inbox.
Optional. Mail on special occasions.

Send this to a friend