Electrical ‘switch’ in cells may keep cancer cells under control

The GLP aggregated and excerpted this blog/article to reflect the diversity of news, opinion and analysis. 

Research led by scientists at The University of Texas Health Science Center at Houston (UTHealth) has revealed a new electrical mechanism that can control the switches that regulate human cell growth. This information is seen as critical in developing treatments for some of the most lethal types of cancer including pancreatic, colon and lung, which are characterized by uncontrolled cell growth caused by breakdowns in cell signaling cascades, according to the scientists.

The research focused on a molecular switch called K-Ras. Mutated versions of K-Ras are found in about 20% of all human cancers in the U.S. and these mutations lock the K-Ras switch in the on position.

“When K-Ras is locked in the on position, it drives cell division, which leads to the production of a cancer,” said John Hancock, Ph.D., Sc.D., the study’s senior author and chairman of the department of integrative biology and pharmacology at UTHealth Medical School. “We have identified a completely new molecular mechanism that further enhances the activity of K-Ras.”

The team’s study (“Membrane potential modulates plasma membrane phospholoipid dynamics and K-Ras signaling”) appears in Science. It focused on the tiny electrical charges that all cells carry across their limiting (plasma) membrane. “What we have shown is that the electrical potential that a cell carries is inversely proportional to the strength of a K-Ras signal,” said Dr. Hancock.

Read full, original post: Electrical Control of Cancer Cells Described

{{ reviewsTotal }}{{ options.labels.singularReviewCountLabel }}
{{ reviewsTotal }}{{ options.labels.pluralReviewCountLabel }}
{{ options.labels.newReviewButton }}
{{ userData.canReview.message }}
screenshot at  pm

Are pesticide residues on food something to worry about?

In 1962, Rachel Carson’s Silent Spring drew attention to pesticides and their possible dangers to humans, birds, mammals and the ...
glp menu logo outlined

Newsletter Subscription

* indicates required
Email Lists
glp menu logo outlined

Get news on human & agricultural genetics and biotechnology delivered to your inbox.