The GLP is committed to full transparency. Download and review our just-released 2019 Annual Report.

Video: Two mutations join forces to create deadlier cancer

| | October 24, 2019

Sometimes the whole is greater than the sum of its parts. Researchers at Cold Spring Harbor Laboratory have discovered that two cell mutations, already harmful alone, enhance one another’s effects, contributing to the development of the deadly blood cancer acute myeloid leukemia (AML).

CSHL Professor Adrian Krainer and his lab, along with Omar Abdel-Wahab at Memorial Sloan Kettering Cancer Center, detailed how mutations of the genes IDH2 and SRSF2 are unexpected partners-in-crime for causing AML.

Specifically, the presence of the IDH2 mutation enhances the errors caused by the SRSF2 mutation, preventing cells in the bone marrow from maturing into the red and white blood cells an AML patient needs to overcome the disease. The team is now exploring ways to quickly shut this cooperation down, creating a powerful means to treat blood cancer.

Related article:  Don’t stop drinking orange juice: Citrus-cancer link overblown

The researchers knew that one of the two mutations in question, the SRSF2 gene, causes errors in a crucial process called RNA splicing. Splicing converts messages from DNA, called RNA, into readable instructions for a cell. Errors in this process can result in serious cell malfunction.

Read full, original post: When Mutant Cells Team Up, an Even Deadlier Blood Cancer Emerges [Video]

The GLP aggregated and excerpted this article to reflect the diversity of news, opinion, and analysis. Click the link above to read the full, original article.
News on human & agricultural genetics and biotechnology delivered to your inbox.
Optional. Mail on special occasions.

Send this to a friend