Should Europe regulate disease-fighting gene drive organisms as GMOs?

Gene Editing

Within the last decades, new genetic engineering tools for manipulating genetic material in plants, animals and microorganisms are getting large attention from the international community, bringing new challenges and possibilities. While genetically modified organisms (GMO) have been known and used for quite a while now, gene drive organisms (GDO) are yet at the consideration and evaluation stage.

The difference between these two technologies, where both are meant to replace certain characters in animals or plants with ones that are more favorable for the human population, is that, even though in GDO there is also foreign “synthetic” DNA being introduced, the inheritance mode differs. In GDO, the genome’s original base arrangements are changed, using CRISPR/Cas-9 genome editing. Once the genome is changed, its alterations are carried down the organism’s offspring and subsequent generations.

In their study, published in the open-access journal BioRisk, an international group of scientists led by Marion Dolezel from the Environment Agency Austria, discuss the potential risks and impacts on the environment.

The research team also points to current regulations addressing invasive alien species and biocontrol agents, and finds that the GMO regulations are, in principle, also a useful starting point for GDO.

There are three main areas suggested to benefit from gene drive systems: public health (e.g. vector control of human pathogens), agriculture (e.g. weed and pest control), environmental protection and nature conservation (e.g. control of harmful non-native species).

sm mosquito feat
A female Anopheles stephensi mosquito bites a human to get a blood meal through its pointed proboscis. A droplet of blood is expelled from the abdomen after having engorged itself.

In recent years, a range of studies have shown the feasibility of synthetic CRISPR-based gene drives in different organisms, such as yeast, the common fruit fly, mosquitoes and partly in mammals.

Given the results of previous research, the gene drive approach can even be used as prevention for some zoonotic diseases and, hence, possible future pandemics. For example, laboratory tests showed that the release of genetically modified mosquitoes can drastically reduce the number of malaria vectors. Nevertheless, potential environment and health implications, related to the release of GDO, remain unclear. Only a few potential applications have so far progressed to the research and development stage.

“The potential of GDOs for unlimited spread throughout wild populations, once released, and the apparently inexhaustible possibilities of multiple and rapid modifications of the genome in a vast variety of organisms, including higher organisms such as vertebrates, pose specific challenges for the application of adequate risk assessment methodologies,” shares the lead researcher Mrs. Dolezel.

In the sense of genetic engineering being a fastly developing science, every novel feature must be taken into account, while preparing evaluations and guidance, and each of them provides extra challenges.

Related article:  Slow-moving bureaucracy in the Philippines could block launch of new GMO soybeans in US, Canada

Today, the scientists present three key differences of gene drives compared to the classical GMO:

  • Introducing novel modifications to wild populations instead of “familiar” crop species, which is a major difference between “classic” GMOs and GDOs. “The goal of gene drive applications is to introduce a permanent change in the ecosystem, either by introducing a phenotypic change or by drastically reducing or eradicating a local population or a species. This is a fundamental difference to GM crops for which each single generation of hybrid seed is genetically modified, released and removed from the environment after a relatively short period,” shares Dolezel.
  • Intentional and potentially unlimited spread of synthetic genes in wild populations and natural ecosystems. Gene flow of synthetic genes to wild organisms can have adverse ecological impact on the genetic diversity of the targeted population. It could change the weediness or invasiveness of certain plants, but also threaten with extinction the species in the wild.
  • Possibility for long-term risks to populations and ecosystems. Key and unique features of GDOs are the potential long-term changes in populations and large-scale spread across generations.

In summary, the research team points out that, most of all, gene drive organisms must be handled extremely carefully, and that the environmental risks related to their release must be assessed under rigorous scrutiny. The standard requirements before the release of GDOs need to also include close post-release monitoring and risk management measures.

It is still hard to assess with certainty the potential risks and impact of gene drive applications on the environment, human and animal health. That’s why highly important questions need to be addressed, and the key one is whether genetically driven organisms are to be deliberately released into the environment in the European Union. The High Level Group of the European Commission’s Scientific Advice Mechanism highlights that within the current regulatory frameworks those risks may not be covered.

The research group recommends the institutions to evaluate whether the regulatory oversight of GMOs in the EU is accommodate to cover the novel risks and challenges posed by gene drive applications.

“The final decision to release GDOs into the environment will, however, not be a purely scientific question, but will need some form of broader stakeholder engagement and the commitment to specific protection goals for human health and the environment”, concludes Dolezel.

Read the original post

Outbreak
Outbreak Daily Digest
Biotech Facts & Fallacies
Talking Biotech
Genetics Unzipped
ft covidresponseus feature

Video: Viewpoint: The US wrote the global playbook on the coronavirus and then ignored it

A year ago, the United States was regarded as the country best prepared for a pandemic. Our government had spent ...
mag insects image superjumbo v

Disaster interrupted: Which farming system better preserves insect populations: Organic or conventional?

A three-year run of fragmentary Armageddon-like studies had primed the journalism pumps and settled the media framing about the future ...
dead bee desolate city

Are we facing an ‘Insect Apocalypse’ caused by ‘intensive, industrial’ farming and agricultural chemicals? The media say yes; Science says ‘no’

The media call it the “Insect Apocalypse”. In the past three years, the phrase has become an accepted truth of ...
globalmethanebudget globalcarbonproject cropped x

Infographic: Cows cause climate change? Agriculture scientist says ‘belching bovines’ get too much blame

A recent interview by Caroline Stocks, a UK journalist who writes about food, agriculture and the environment, of air quality ...
organic hillside sweet corn x

Organic v conventional using GMOs: Which is the more sustainable farming?

Many consumers spend more for organic food to avoid genetically modified products in part because they believe that “industrial agriculture” ...
benjamin franklin x

Are most GMO safety studies funded by industry?

The assertion that biotech companies do the research and the government just signs off on it is false ...
gmo corn field x

Do GMO Bt (insect-resistant) crops pose a threat to human health or the environment?

Bt is a bacterium found organically in the soil. It is extremely effective in repelling or killing target insects but ...
favicon

Environmental Working Group: EWG challenges safety of GMOs, food pesticide residues

Known by some as the "Environmental Worrying Group," EWG lobbies for tighter GMO legislation and famously puts out annual "dirty dozen" list of fruits and ...
m hansen

Michael Hansen: Architect of Consumers Union ongoing anti-GMO campaign

Michael K. Hansen (born 1956) is thought by critics to be the prime mover behind the ongoing campaign against agricultural biotechnology at Consumer Reports. He is an ...
News on human & agricultural genetics and biotechnology delivered to your inbox.
Optional. Mail on special occasions.
Send this to a friend