Epigenetic cellular controls key for sperm and cancers

Sometimes in science there are unexpected threads tying seemingly very different things together.

Unraveling the knots in these threads can lead to new insights into important developmental processes and mechanisms of disease.

My lab studies epigenomic and transcription factors including a molecule called histone variant H3.3 (more here on H3.3).

H3.3 binds to the actual thread of DNA to create very different kinds of chromatin states than those made by the more traditional canonical histone H3 family members. Think of H3.3 as the unorthodox member of the histone H3 family.

ADVERTISEMENT

Recent studies have indicated that H3.3 plays key roles in both stem cells and cancer.

The two genes that make H3.3 protein, H3f3a and H3f3b, are expressed differentially so cells may make their total pool of H3.3 protein only from the “a” gene or only the “b” gene or from both. We knocked out the “b” gene.

As a result, some genes switched inappropriately into “on” mode, while others that were supposed to be active were  switched off. The germ cell DNA was also not packaged properly. The end result was dead or dysfunctional sperm. In addition, earlier on in the spermatogenesis process, specific more primitive germ cell populations in the “b” knockouts died as well.

Read the full, original story: What do sperm have to do with brain tumors?

ADVERTISEMENT
ADVERTISEMENT
Outbreak Daily Digest
Biotech Facts & Fallacies
GLP Podcasts
Infographic: Here’s where GM crops are grown around the world today

Infographic: Here’s where GM crops are grown around the world today

Do you know where biotech crops are grown in the world? This updated ISAAA infographics show where biotech crops were ...
News on human & agricultural genetics and biotechnology delivered to your inbox.
glp menu logo outlined

Newsletter Subscription

* indicates required
Email Lists
Send this to a friend