Viewpoint: ‘Worrisome conflicts’ created by lack of diversity in biotech research funding

| July 16, 2018
research
This article or excerpt is included in the GLP’s daily curated selection of ideologically diverse news, opinion and analysis of biotechnology innovation.

You exit a cramped, hazy subway car with a throng of professionals. As you emerge blinking into Kendall Square in Cambridge, MA, the crowd descends on a nest of pharmaceutical offices huddled around the Charles River, overlooking downtown Boston. MIT, Harvard, bougie cafes and hotels, trendy co-working spaces filled with startups, and giants like Google are dispersed throughout the biotech colosseum. Last but not least, there are the Institutes – the Ragon, the Koch, the McGovern, the Picower, the Whitehead, and the Broad – all named after billionaire donors seeding a stake as a powerhouse in their respective fields. And more is on the way. The Gates Foundation is building a nonprofit research institute and China is moving to secure space in the area.

This is why biotechnology and life sciences are exceptionally strong in Boston. Almost everyone in biotech works in Boston, or works with somebody who does. It’s why they continue to bring new students from all over – and why I came here. The area is in a cycle of shared dominance with other epicenters like San Francisco, Research Triangle in North Carolina, the metropolitan New York area, and DC. But these zones represent a growing erosion of geographical diversity in America’s higher education system. These areas are raking in thousands of awards, worth billions, and are reinforced with billions of venture capital funding and huge amounts of new lab space. Even between two major centers, Boston and DC, Boston acquires151 percent more funding from the National Institutes of Health, 58 percent more patents, and 2,010 percent more venture capital investment. These are the gaps just at the top of the pyramid.

Coming from a public research university in a smaller city, Kendall Square was a stark change. I remember giving tours at my undergraduate university to prospective students, mentioning our benefactor, who donated eight figures to rename and boost our engineering school facilities. As I took the tour group into our workshops, I mentioned the innovation competitions on campus offering thousands of dollars for new, transformative ideas. Now, I work in a single building worth more than a third of my alma mater’s endowment, and work for an innovation program on campus that offers, collectively, millions every year for hundreds of teams.

uber 5 16 18
Uber but for trees. Image credit: Viv Lynch / Flickr

It’s a remarkable environment, a place that undoubtedly everyone is thankful to be a part of. But it’s hard to ignore what makes this possible. Universities like Harvard, Stanford, and MIT are supported by progressive state governments, diverse student groups, and endowments totaling nearly $75 billion. These private universities do not experience the same stresses currently affecting public research universities, particularly in the Midwest. These schools have to lobby state governments to secure funding, like my alma mater did last fall, and manage state politics. Successful professors often depart to other universities, especially when a large pay gap exists, sometimes leaving undergraduates without their adviser. Per-student spending has dramatically fallen in states like Illinois, Iowa, and Michigan. And NIH funding underlines these trends. Half of all NIH funding is awarded to only 10 percent of states and 2 percent of funded organizations. These imbalances repeat through all the ways technology is commercialized: 20 percent of universities contribute to 60 percent of startups.

Beyond the attraction of top faculty and enormous endowments stand the donors, ready with hundreds of millions of dollars for the pursuit of groundbreaking advances in brain science, astrophysics, artificial intelligence, coral reefs, and other interests. If top researchers and universities didn’t collect enough government money, private donors make up the rest, accounting for 30 percent of all research money at top universities like Harvard, Stanford, and Johns Hopkins. And all money is not equal. Private donors offer independence and inspiration, free of government requirements and filled with curiosity and persistence to solve personal ambitions and altruistic pursuits.

Related article:  Earth's weirdest and most exotic creatures: Research bonanza for genetics and science
Follow the latest news and policy debates on agricultural biotech and biomedicine? Subscribe to our newsletter.

As if this weren’t enough, universities and nonprofits increasingly claim patents on research generated from federally funded projects. The debate surrounding the patents of the controversial gene editing technology, CRISPR-Cas9, is a perfect example: just one company with patent licenses has garnered millions in funding and deals worth hundreds of millions. University patents and licenses are of particular interest to these donors. Take the Chan Zuckerberg Biohub in San Francisco for example, where it has exclusive rights to commercialize research, regardless of whether it was funded by American taxpayers or not. The power to affect research, for better or worse, by “free-market philanthropy” raises yet more questions about the shifting future of American public research.

But on the flip-side, all these patents, venture capital, and startups mean that research, often dense and walled off in academia, is being translated to the public. It means that work performed in the lab – the new diagnostics, medicines, agricultural tools, biomanufacturing, sustainable products, ways to produce meat – will affect someone outside the lab, directly. This is exactly what university research is for.

boston 5 16 18
Boston. Image credit: Mohit Singh / Unsplash

This is the inherent beauty about the spirit of public research. The collective pursuit of knowledge for the benefit of the greater good, paid for by the greater whole. While I believe this continues to be largely true, many – including Michael Eisen, the outspoken biologist and former California Senate candidate – have pointed out the changing landscape. A large influx of donor money with protected interests has spurred massive, publicly funded grants, incredible facilities to attract talent, and awe-inspiring ambitions and success. And despite many good intentions, these donors have contributed to powerhouse clusters of research – and more stratification of the research ladder system.

massive logoScience’s funding has always shifted, depending on what money is available and who is involved, with oversight in the modern era mostly through peer and grant reviews. But as I stop by my institute’s in-house barista, the rich get richer phenomenon is plain as the coffee in my hand. The trends point to growing inequality and declining diversity in our system of world-class universities charged with solving science and society’s biggest challenges.

In a system ripe with reputation-driven incentives, this pattern raises worrisome conflicts. How can we ensure and promote funding diversity while maximizing the practical, direct public impact of our work? Wayne Wahls, Professor at the University of Arkansas, proposes some clear, bold empirical steps, such as setting a lower and upper limit to the amount of funding a lab can receive.

I’m unbelievably thankful for the chance to study what I’m curious about, but these trends should make every young graduate student wonder: what will the environment to get a job, publish a paper, or find a fellowship look like in five years? In 10? As some argue, there are too many PhD students, employment after graduation continues to look bleak, and very few actually become professors, perhaps because 40 percent of the funding goes to 10 percent of professors.

In this era of billionaires and unequal funding, where is research going? And perhaps more importantly, how will our changing resources affect the training, success, and diversity of the scientists of our future?

Josh Peters is a PhD student in biological engineering at the Massachusetts Institute of Technology. Follow him on Twitter @joshpetepeters 

This article originally appeared at Massive as Billionaires are rushing into biotech. Inequality is following them into science and has been republished here with permission.

 

The GLP featured this article to reflect the diversity of news, opinion and analysis. The viewpoint is the author’s own. The GLP’s goal is to stimulate constructive discourse on challenging science issues.

Outbreak
Outbreak Daily Digest
Biotech Facts & Fallacies
Talking Biotech
Genetics Unzipped
sperm swim

Video: Sperm are ‘spinners not swimmers’—because they are lopsided

Research by fertility scientists in the UK and Mexico challenges the accepted view of how sperm “swim”, suggesting that it ...
mag insects image superjumbo v

Disaster interrupted: Which farming system better preserves insect populations: Organic or conventional?

A three-year run of fragmentary Armageddon-like studies had primed the journalism pumps and settled the media framing about the future ...
dead bee desolate city

Are we facing an ‘Insect Apocalypse’ caused by ‘intensive, industrial’ farming and agricultural chemicals? The media say yes; Science says ‘no’

The media call it the “Insect Apocalypse”. In the past three years, the phrase has become an accepted truth of ...
breastfeeding bed x facebook x

Infographic: We know breastfeeding helps children. Now we know it helps mothers too

When a woman becomes pregnant, her risk of type 2 diabetes increases for the rest of her life, perhaps because ...
biotechnology worker x

Can GMOs rescue threatened plants and crops?

Some scientists and ecologists argue that humans are in the midst of an "extinction crisis" — the sixth wave of ...
food globe x

Are GMOs necessary to feed the world?

Experts estimate that agricultural production needs to roughly double in the coming decades. How can that be achieved? ...
eating gmo corn on the cob x

Are GMOs safe?

In 2015, 15 scientists and activists issued a statement, "No Scientific consensus on GMO safety," in the journal Environmental Sciences ...
Screen Shot at PM

Charles Benbrook: Agricultural economist and consultant for the organic industry and anti-biotechnology advocacy groups

Independent scientists rip Benbrook's co-authored commentary in New England Journal calling for reassessment of dangers of all GMO crops and herbicides ...
Screen Shot at PM

ETC Group: ‘Extreme’ biotechnology critic campaigns against synthetic biology and other forms of ‘extreme genetic engineering’

The ETC Group is an international environmental non-governmental organization (NGO) based in Canada whose stated purpose is to monitor "the impact of emerging technologies and ...
Share via
News on human & agricultural genetics and biotechnology delivered to your inbox.
Optional. Mail on special occasions.
Send this to a friend