Battling Parkinson’s disease by rejuvenating aging cells

| February 8, 2019
Screen Shot at AM
This article or excerpt is included in the GLP’s daily curated selection of ideologically diverse news, opinion and analysis of biotechnology innovation.

It started with a hand tremor that was more pronounced when typing. At first, it just interfered with hobbies. But it got progressively worse. Soon handwriting was illegible. The simple act of walking became difficult. Memory problems and an urgency to urinate finally send the patient to the doctor, for the cruel diagnosis: Parkinson’s disease, a condition resulting from cell degeneration in the brain.

There are other disorders like it, Alzheimer’s for example, that share an important trait — they arise when the body’s aging cells stop doing what they are supposed to do.

For many of these conditions, there are no cures, just treatments designed to slow the progression, where possible. But we may soon be looking at new treatment options developed through mitochondrial genetics and the study of aging.

The degeneration of aging cells is related to abnormalities in power plant organelles called mitochondria. In normal cell function, these mitochondria deteriorate over time and are eventually ejected from the cell.

Over the past few decades, researchers have discovered evidence that mitochondria become dysfunctional because of mutations in their DNA. (Mitochondrial DNA, or mtDNA, is separate from the DNA comprising the chromosomes of a cell’s nucleus.) The dysfunction, in turn, is connected to cellular aging and the onset of degenerative diseases. There are two new developments in this area of research.

The first involves the realization that while certain mtDNA mutations contribute to the disruption of mitochondrial function, there are mutations in other mitochondrial genes that prevent the cell from  removing the dysfunctional mitochondria. Essentially, the cell loses the ability to perform its own quality control.parkinsons

“We know that increased rates of mtDNA mutation cause premature aging,” said Bruce Hay, Professor of biology and biological engineering at the California Institute of Technology. “This, coupled with the fact that mutant mtDNA accumulates in key tissues such as neurons and muscle that lose function as we age, suggests that if we could reduce the amount of mutant mtDNA, we could slow or reverse important aspects of aging.”

This brings us to the second major development relevant to mitochondria in disease — that genetic technology is now at a point where the targeted removal of the problem mitochondrial genes can become the basis for clinical intervention. This is the implication of research that Hay and colleagues both at Caltech and the University of California at Los Angeles described in a paper published in the journal Nature Communications.

Related article:  Frozen in time: You can be cryogenically preserved, but will you ever be revived?

Fixing body tissues by knocking out genes that prevent bad mitochondrial from being ousted in a timely fashion might sound like science fiction, but that’s where things are going and it’s part of a growing trend of what’s being described as mitochondrial medicine.

Follow the latest news and policy debates on agricultural biotech and biomedicine? Subscribe to our newsletter.

With degenerative diseases, the standard treatment involves the replacement of the physiologic function of the diseased tissue. In Parkinson’s disease, this often means replacing a neurotransmitter called dopamine in a part of the brain where it’s lacking, due to degeneration of dopamine-making cells. While this works well in the initial stages of the disease, it gradually becomes less effective.

There are two new strategies. One is to regenerate the failing tissue using stem cells. The other is gene therapy in which the patients’ own brain cells are given the ability to make something they don’t usually make. For instance, the part of the brain that usually receives dopamine is given the ability to make its own dopamine.

Neurosurgeons are actually quite good at injecting agents into specific regions of the brain with extreme precision. This is why gene therapy and stem cell therapy are showing promise. But this also means there’s a capability to deliver agents that could affect mitochondria. It means that it should be possible in the near future to manage degenerative diseases with a third advance treatment prong: restoring the cell’s ability to expel failing mitochondria.

A version of this article originally appeared on the GLP on January 19, 2017.

David Warmflash is an astrobiologist, physician and science writer. Follow him on Twitter @CosmicEvolution

The GLP featured this article to reflect the diversity of news, opinion and analysis. The viewpoint is the author’s own. The GLP’s goal is to stimulate constructive discourse on challenging science issues.

Outbreak
Outbreak Daily Digest
Biotech Facts & Fallacies
Talking Biotech
Genetics Unzipped
a a b b a f ac a

Video: Death by COVID: The projected grim toll in historical context

The latest statistics, as of July 10, show COVID-19-related deaths in U.S. are just under 1,000 per day nationally, which is ...
mag insects image superjumbo v

Disaster interrupted: Which farming system better preserves insect populations: Organic or conventional?

A three-year run of fragmentary Armageddon-like studies had primed the journalism pumps and settled the media framing about the future ...
dead bee desolate city

Are we facing an ‘Insect Apocalypse’ caused by ‘intensive, industrial’ farming and agricultural chemicals? The media say yes; Science says ‘no’

The media call it the “Insect Apocalypse”. In the past three years, the phrase has become an accepted truth of ...
types of oak trees

Infographic: Power of evolution? How oak trees came to dominate North American forests

Over the course of some 56 million years, oaks, which all belong to the genus Quercus, evolved from a single undifferentiated ...
biotechnology worker x

Can GMOs rescue threatened plants and crops?

Some scientists and ecologists argue that humans are in the midst of an "extinction crisis" — the sixth wave of ...
food globe x

Are GMOs necessary to feed the world?

Experts estimate that agricultural production needs to roughly double in the coming decades. How can that be achieved? ...
eating gmo corn on the cob x

Are GMOs safe?

In 2015, 15 scientists and activists issued a statement, "No Scientific consensus on GMO safety," in the journal Environmental Sciences ...
Screen Shot at PM

Charles Benbrook: Agricultural economist and consultant for the organic industry and anti-biotechnology advocacy groups

Independent scientists rip Benbrook's co-authored commentary in New England Journal calling for reassessment of dangers of all GMO crops and herbicides ...
Screen Shot at PM

ETC Group: ‘Extreme’ biotechnology critic campaigns against synthetic biology and other forms of ‘extreme genetic engineering’

The ETC Group is an international environmental non-governmental organization (NGO) based in Canada whose stated purpose is to monitor "the impact of emerging technologies and ...
Share via
News on human & agricultural genetics and biotechnology delivered to your inbox.
Optional. Mail on special occasions.
Send this to a friend