Astonishing efficiency, unlimited storage: What makes the human brain so powerful?

wm
Image: Science Photo Library
[A] team from Washington University in St. Louis combined neural recordings from rats with computer modeling to uncover one of the largest mysteries of the brain: why, despite noisy components, it’s so damn powerful. By analyzing firing patterns from hundreds of neurons over days, the team found evidence that supports a type of “computational regime” that may underlie every thought and behavior that naturally emerge from electrical sparks in the brain—including consciousness.

The answer, as it happens, has roots in an abstruse and controversial idea in theoretical physics: criticality. For one of the first times, the team observed an abstract “pull” that lures neural networks back into an optimal functional state, so they never stray far from their dedicated “set points” determined by evolution. Even more mind-blowing? That attractive force somehow emerges from a hidden universe of physical laws buried inside the architecture of entire neural networks, without any single neuron dictating its course.

“It’s an elegant idea: that the brain can tune an emergent property to a point neatly predicted by the physicists,” said lead author Dr. Keith Hengen.

Read full, original post: This Strange Rule Is What Makes the Human Brain So Powerful

{{ reviewsTotal }}{{ options.labels.singularReviewCountLabel }}
{{ reviewsTotal }}{{ options.labels.pluralReviewCountLabel }}
{{ options.labels.newReviewButton }}
{{ userData.canReview.message }}
screenshot at  pm

Are pesticide residues on food something to worry about?

In 1962, Rachel Carson’s Silent Spring drew attention to pesticides and their possible dangers to humans, birds, mammals and the ...
glp menu logo outlined

Newsletter Subscription

* indicates required
Email Lists
glp menu logo outlined

Get news on human & agricultural genetics and biotechnology delivered to your inbox.