Genetically improving the root system architectures of plants is an effective strategy for developing climate-resilient crops. In this study, we revealed that a cloned rice quantitative trait locus associated with root growth angle, qSOR1, is a DRO1 homolog involved in root gravitropic responses.
The loss-of-function allele qsor1 resulted in roots that developed on the soil surface and enabled plants to avoid the reducing stress found in saline paddy soils and, consequently, increased yields. We show that the DRO1 homologs could be useful for the controlled breeding of root system architectures that are adapted to the abiotic stress conditions caused by global climate change.
The root system architecture (RSA) of crops can affect their production, particularly in abiotic stress conditions, such as with drought, waterlogging, and salinity. Salinity is a growing problem worldwide that negatively impacts on crop productivity, and it is believed that yields could be improved if RSAs that enabled plants to avoid saline conditions were identified.
…
In saline paddies, near-isogenic lines carrying the qSOR1 loss-of-function allele had soil-surface roots (SOR) that enabled rice to avoid the reducing stresses of saline soils, resulting in increased yields compared to the parental cultivars without SOR. Our findings suggest that DRO1 homologs are valuable targets for RSA breeding and could lead to improved rice production in environments characterized by abiotic stress.