Nitrogen-efficient rice could preserve crop yields while cutting environmental impact of fertilizer

Fertilizer Farm Rice Field
Credit: Kashmir Patriot

Nitrogen fertilizer has an indispensable role in increasing crop yields, but on the other hand, it creates a severe threat to ecosystems. For this reason, breeding new crop varieties with high nitrogen use efficiency (NUE) is a high priority for both agricultural production and environmental protection.

Using a diversified rice population from different regions, the scientists carefully evaluated how various agronomic traits responded to nitrogen in fields with different nitrogen supply conditions. They further performed a genome-wide association study (GWAS), with one very significant GWAS signal identified. The detailed mechanisms of how OsTCP19 works in regulating rice tillering were also characterized.

Follow the latest news and policy debates on sustainable agriculture, biomedicine, and other ‘disruptive’ innovations. Subscribe to our newsletter.

The researchers found that OsTCP19-H, the high NUE allele, was highly preserved in rice types grown in nitrogen-poor regions, but has been lost in rice types grown in nitrogen-rich regions. They also found that OsTCP19-H is also highly prevalent in wild rice which was grown in natural soil without artificial fertilizer input, and concludes that OsTCP19-H introgression into modern cultivars can improve nitrogen use efficiency 20-30% under conditions of decreased nitrogen supply.

Read the original post

{{ reviewsTotal }}{{ options.labels.singularReviewCountLabel }}
{{ reviewsTotal }}{{ options.labels.pluralReviewCountLabel }}
{{ options.labels.newReviewButton }}
{{ userData.canReview.message }}
screenshot at  pm

Are pesticide residues on food something to worry about?

In 1962, Rachel Carson’s Silent Spring drew attention to pesticides and their possible dangers to humans, birds, mammals and the ...
glp menu logo outlined

Newsletter Subscription

* indicates required
Email Lists
glp menu logo outlined

Get news on human & agricultural genetics and biotechnology delivered to your inbox.