Jennifer Doudna on how CRISPR is moving out of the lab to transform medicine and revolutionize disease treatments

Credit: Michele Marconi
Credit: Michele Marconi

In 2021, we will see increased use of CRISPR-Cas enzymes to underpin a new generation of cost-effective, individualised therapies. With CRISPR enzymes, we can cut DNA at precise locations, using specifically designed proteins, and insert or delete pieces of DNA to correct mutations.

As we deepen our understanding of the human genome and genetic disorders, patients with previously intractable diseases, such as sickle-cell disease and cancer, will benefit more widely from CRISPR-based therapies that are rapidly moving from the lab to the clinic. In 2019, sickle-cell patient Victoria Gray, for example, became one of the first patients in the world to receive CRISPR therapy for her genetic disease. She has already seen significant improvements to her health, including reduced pain and less frequent need for blood transfusions.

CRISPR will also allow us to act more boldly in the face of other important, interconnected issues such as food security, environmental sustainability and social inequality. The technology will help us grow more nutritious and robust crops, establish “gene drives” to control the spread of other infectious diseases such as Zika, and develop cleaner energy sources such as algae-based biofuels.

Follow the latest news and policy debates on agricultural biotech and biomedicine? Subscribe to our newsletter.


In a world forever changed by Covid-19, we will find ways to responsibly apply CRISPR in 2021 and beyond.

Read the original post

Related article:  The human protein that might explain who’s most at risk from Covid-19
Outbreak Daily Digest
Biotech Facts & Fallacies
Genetics Unzipped
Infographic: Deaths from COVID-19 are far higher than reported estimates

Infographic: Deaths from COVID-19 are far higher than reported estimates

More than 2.8 million people have lost their lives due to the pandemic, according to a Wall Street Journal analysis ...

Gilles-Éric Séralini: Activist professor and face of anti-GMO industry

The French biologist and his research team--funded by the Rodale ...
vandana shiva

Vandana Shiva: ‘Rock Star’ of GMO protest movement has anti-science history

In a 2012 interview, Bill Moyers referred to Vandana Shiva as ...
News on human & agricultural genetics and biotechnology delivered to your inbox.
glp menu logo outlined

Newsletter Subscription

Optional. Mail on special occasions.
Send this to a friend