The GLP is committed to full transparency. Download and review our just-released 2019 Annual Report.

DNA deletions promote cancer, collateral damage makes it vulnerable

| August 23, 2012

Genomic deletions promote cancer by carving up or eliminating tumor-suppressor genes, but now scientists report in the journal Nature that the collateral damage they inflict on neighboring genes exposes cancer cells to vulnerabilities and new avenues for attack.

Working with cell lines of glioblastoma multiforme, the most lethal type of brain tumor, researchers from the Dana-Farber Cancer Institute at Harvard Medical School, and some now at The University of Texas MD Anderson Cancer Center, found that collateral deletion of a gene vital to tumor metabolism allowed them to kill malignant cells by blocking another gene that redundantly performs the same function.

“Cancer-driving deletions disable tumor suppressors, and so far efforts to restore or replace the function of these deactivated genes, or turn them against cancer cells, have yet to show promising results,” said co-lead author Florian Muller, Ph.D., an instructor in MD Anderson’s Department of Genomic Medicine.

View the original article here: DNA deletions promote cancer, collateral damage makes it vulnerable

The GLP aggregated and excerpted this article to reflect the diversity of news, opinion, and analysis. Click the link above to read the full, original article.
News on human & agricultural genetics and biotechnology delivered to your inbox.
Optional. Mail on special occasions.

Send this to a friend