Increasing gene transcription factor causes organ to repair itself

Regenerative medicine—the idea that it is possible to revitalise old, dilapidated tissue and keep a body going when its organs start to fail—is attractive. Much effort has thus been put into creating and nurturing so-called pluripotent stem cells. These, when appropriately nudged, can be induced to turn into cells of any other type. They might therefore be used for all sorts of repairs. Pluripotent cells, which once had to be extracted from embryos, can now be made routinely from body cells (skin cells, for example). Experiments are going on to see if, when made from the cells of a particular individual, they might be used to repair damage to that person’s organs without (as a transplant from someone else would) attracting the attention of his immune system.

This approach is promising. It would be even better, though, if rather than having stem cells transplanted into it, a degenerate organ could be persuaded to repair itself. Until now, no one has managed to do this. But Clare Blackburn of Edinburgh University in Britain, and her colleagues, have succeeded. As they report in Development, they have treated, in mice, an organ called the thymus, a part of the immune system that runs down in old age. Instead of adding stem cells they have stimulated their animals’ thymuses to make more of a protein known as FOXN1. This is a transcription factor (a molecular switch that activates genes), and for the thymus it turns out to be an elixir of life.

Read the full, original story: Engage reverse gear

{{ reviewsTotal }}{{ options.labels.singularReviewCountLabel }}
{{ reviewsTotal }}{{ options.labels.pluralReviewCountLabel }}
{{ options.labels.newReviewButton }}
{{ userData.canReview.message }}
skin microbiome x final

Infographic: Could gut bacteria help us diagnose and treat diseases? This is on the horizon thanks to CRISPR gene editing

Humans are never alone. Even in a room devoid of other people, they are always in the company of billions ...
glp menu logo outlined

Newsletter Subscription

* indicates required
Email Lists
glp menu logo outlined

Get news on human & agricultural genetics and biotechnology delivered to your inbox.