Using the human mind to control how genes work


Combining two technologies–optogenetics and neuroelectromechanical interfaces—researchers based in Switzerland and France have demonstrated a means for control gene expression through human thoughts. Triggered by three possible mindsets, each manifesting as a particular electroencephalographic (EEG) pattern, the system can turn on and off, and regulate a genetically engineered cyclic-di-GMO-dependent secondary messenger system.

The link between the two technologies is light, which activates a bacterial diguanylate cyclase (DGCL) that has been engineered to respond to near infrared (NIR) wavelengths. Within cultured cells inside an implant that the team tested in mice, the resulting molecular cascade leads to the synthesis of secreted alkaline phosphatase (SEAP), a human enzyme used frequently as a model for gene expression studies. The long-term expectation is that the approach will lead to novel mind-controlled drug delivery systems.

Mind control and gene control

Both technologies that the research has combined have been around for several years, progressing independently. Molecules that activate enzymes, affecting cascades that control gene expression, in response to light are part of nature. A well-known example is tanning, caused by the activation of melanin synthesis in skin cells called melanocytes in response to ultraviolet light (UV) from the Sun.

An even more sophisticated system regulates the production of chlorophyll in tree leaves, according to seasonal changes in the amount of light. This is what cause leaves to change color in autumn. In nature, there are many different molecules responding not only to light, but particular ranges of wavelengths. All light-activated gene-controlling molecules are either proteins, or made by protein enzymes, and thus are themselves products of genes. The term optogenetics refers to the harnessing of those genes to control molecular events in cells and tissues. In this case, an NIR-sensitive optogenetic system was chosen for combination EEG-controlled interfaces, because NIR is able to penetrate through skin and other tissue, without damaging it.

As for using the mind to control machines, particular EEG wave patterns are associated not only with seizures and the wake-sleep cycle, but also with different states of mind. Consequently, the last few years have seen progress on EEG computer interfaces being developed to enable people with spinal cord injuries to bypass the injury and use their minds to control robot implants that move the limbs.

Medical research aside, five years ago, the toy company Mattel came out with a game called Mindflex that works through an EEG in a headset, through which the player controls the speed of a fan to steer a ball through an obstacle course. Considering the Mindflex headset arrangement what inspired the authors of the new mind control gene expression study.

The setup

Using a Bluetooth type of headset linked to EEG sensors, human subjects in the Swiss-French study were trained to generate three types of electromagnetic patterns, corresponding to three mental states: biofeedback control, concentration, and meditation. The resulting signals were

via Nature
via Nature

were harnessed to control on-off switching of NIR light with a wireless implant that also contained cells genetically engineered to respond to turn on the SEAP gene in response to the light. After being synthesized within the NIR-stimulated cells, SEAP is secreted from the implant, which the research team “implanted” into an in vitro setup (a cell culture, where SEAP concentration could be measured over time), and also subcutaneously in mice (in which SEAP concentrations could be measured in the bloodstream. In both the in vitro and the in vivo setup, the Bluetooth-wearing humans were able to turn the SEAP gene on and off.

Potential applications

While using a trio of thought patters to control gene expression for a protein in a laboratory setting may not sound like much more than a neat trick, the potential for medical applications is actually quite staggering. Consider, pain management for instance. EEG patterns connected with pain and other feelings could be utilized to stimulate genetic expression for enzymes involved in the synthesis of beta-endorphin. Even more imaginatively, the authors are thinking that, far in the future, brain wave patterns might also be able to control devices such as insulin pumps for diabetes, cochlear implants, various bionics, and even heart implants, all through optogenetic interfaces.

As with any very new biomedical technology, ethical issues will be raised as experts consider means through which the devices might be perverted for some negative application. Right now, it’s good material for a sci fi or spy thriller, and as the approach matures into one or more specific devices linking the delivery of gene products to the recipient’s state of mind, people will suggest potential horror applications by evil geniuses. But this happens often with new technologies, and at this point biomedical technology where almost anything in the wrong hands can produce horrors. For the moment, we should keep in mind that the new study represents a new direction for biomedicine. It’s a marriage of two powerful technologies, and at this point we should be inspired be the potential to improve the human condition.

David Warmflash is an astrobiologist, physician and science writer. Follow @CosmicEvolution to read what he’s saying on Twitter.


Outbreak Daily Digest
Biotech Facts & Fallacies
Talking Biotech
Genetics Unzipped
Video: Test everyone – Slovakia goes its own way to control COVID

Video: Test everyone – Slovakia goes its own way to control COVID

As Europe sees record coronavirus cases and deaths, Slovakia is testing its entire adult population. WSJ's Drew Hinshaw explains how ...
mag insects image superjumbo v

Disaster interrupted: Which farming system better preserves insect populations: Organic or conventional?

A three-year run of fragmentary Armageddon-like studies had primed the journalism pumps and settled the media framing about the future ...
dead bee desolate city

Are we facing an ‘Insect Apocalypse’ caused by ‘intensive, industrial’ farming and agricultural chemicals? The media say yes; Science says ‘no’

The media call it the “Insect Apocalypse”. In the past three years, the phrase has become an accepted truth of ...
globalmethanebudget globalcarbonproject cropped x

Infographic: Cows cause climate change? Agriculture scientist says ‘belching bovines’ get too much blame

A recent interview by Caroline Stocks, a UK journalist who writes about food, agriculture and the environment, of air quality ...
organic hillside sweet corn x

Organic v conventional using GMOs: Which is the more sustainable farming?

Many consumers spend more for organic food to avoid genetically modified products in part because they believe that “industrial agriculture” ...
benjamin franklin x

Are most GMO safety studies funded by industry?

The assertion that biotech companies do the research and the government just signs off on it is false ...

Environmental Working Group: EWG challenges safety of GMOs, food pesticide residues

Known by some as the "Environmental Worrying Group," EWG lobbies for tighter GMO legislation and famously puts out annual "dirty dozen" list of fruits and ...
m hansen

Michael Hansen: Architect of Consumers Union ongoing anti-GMO campaign

Michael K. Hansen (born 1956) is thought by critics to be the prime mover behind the ongoing campaign against agricultural biotechnology at Consumer Reports. He is an ...
News on human & agricultural genetics and biotechnology delivered to your inbox.
Optional. Mail on special occasions.
Send this to a friend