Newly-discovered ‘dark matter’ of genome helps immune system function

| | October 27, 2015
This article or excerpt is included in the GLP’s daily curated selection of ideologically diverse news, opinion and analysis of biotechnology innovation.

The GLP aggregated and excerpted this blog/article to reflect the diversity of news, opinion and analysis. 

Scientists at the UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research have discovered more than 3,000 previously unknown genes in a poorly understood part of the genome. These genes, found in rare cells in bone marrow and in the thymus, give scientists a new understanding of how the human immune system develops.

The findings are published in the journal Nature Immunology.

“The genes we found are called long non-coding RNAs, or LncRNAs,” said Gay Crooks, co-director of the UCLA Broad Stem Cell Research Center, a member of the UCLA Jonsson Comprehensive Cancer Center and co-senior author of the study. “They make up much of what we used to think of as the ‘dark matter’ of our genome because, unlike the better-known messenger RNA genes, they do not produce proteins. The function of LncRNAs is not well-known but it is becoming increasingly apparent that they are not inert; they have a critical role in controlling how other genes function.”

The discovery of LncRNAs is unique because they do not produce proteins, unlike the genes that have been more thoroughly researched in other studies. While the stem cells and progenitor cells the team studied make up less than 1 percent of the bone marrow and thymus, the genes they contain are critical to generating the cells of the immune system.

Read full, original post: UCLA researchers discover more than 3,000 genes in a little-studied part of the human genome

Share via
News on human & agricultural genetics and biotechnology delivered to your inbox.
Optional. Mail on special occasions.
Send this to a friend