Mosquito suppression on 'continental scale' could be possible with CRISPR

Scientists at UC Berkeley and UC Riverside have demonstrated a way to edit the genome of disease-carrying mosquitoes that brings us closer to suppressing them on a continental scale. The study used CRISPR/Cas9 gene-editing technology to insert and spread genes designed to suppress wild insects, while at the same time avoiding the resistance to these efforts that evolution would typically favor.

...

“What we showed is that, if you disrupt a gene required for fertility in female mosquitoes at multiple sites all at once, it becomes much harder for the population to evolve around that disruption. As a result, you can suppress a much larger population. It’s much the same as combination drug therapy, but for CRISPR-based gene drive,” said John Marshall, the study’s lead author and an assistant professor of biostatistics and epidemiology at the UC Berkeley School of Public Health.

...

The technology at the heart of the study is called a gene drive system, which manipulates how genetic traits are inherited from parent to offspring. Gene drives are used to bias genetic inheritance in favor of rapidly spreading, self-destructive genes, and could be an environmentally friendly and cost-effective way to suppress populations of disease-spreading insects.

...

“The potential of multiplexing is vast. With one guide RNA, we could suppress a room of mosquitoes. With four, we could potentially suppress a continent and the diseases they transmit. But nature has a knack for finding a way around hurdles, so assessing that potential will require a lot more work,” Marshall said.

The GLP aggregated and excerpted this blog/article to reflect the diversity of news, opinion, and analysis. Read full, original post: New gene-editing technique could drive out mosquito borne disease

Send this to a friend