CRISPR gene editing yields corn resistant to widely used sulfonylurea herbicide, study shows

Print Friendly, PDF & Email
GetStoredImage
Credit: Brent Warren, Kurt Lawton (Corn) Getty Images (DNA rendering)

Researchers from Chinese Academy of Agricultural Sciences and other institutions reported precise based editing of maize genes using CRISPR-Cas9, leading to development of sulfonylurea herbicide resistance. The results are published in The Crop Journal.

A CRISPR-Cas9 nickase-cytidine deaminase fused with uracil DNA glycosylase inhibitor was used for targeted conversion of cytosine (C) to thymine (T) in two non-allelic acetolactate synthase genes (ZmALS1 and ZmALS2) to generate sulfonylurea herbicide resistant mutants. The results showed that both protoplasts and recovered mutant plants exhibited the activity of the cytosine base editor. Transgene-free edited plant with ZmALS1 mutation or a ZmALS1 and ZmALS2 double mutation were tested for their resistance at a dose of up to 15-fold the recommended limit of sulfonylurea herbicide.

Related article:  Gene drives could speed up inheritance of certain beneficial traits in mammals, study finds

Based on the results, the confirmed targeted base editing in maize plants exhibiting herbicide resistance could be a potential technique in precision breeding of maize.

Read full, original article: Crop Biotech Update January 15, 2020

Outbreak Daily Digest
Biotech Facts & Fallacies
GLP Podcasts
Infographic: Trending green and going great — Every state in the US seeing decreased cases of COVID

Infographic: Trending green and going great — Every state in the US seeing decreased cases of COVID

The U.S. averaged fewer than 40,000 new cases per day over the past week. That’s a 21% improvement over the ...
a bee covered in pollen x

Are GMOs and pesticides threatening bees?

First introduced in 1995, neonicotinoids ...
News on human & agricultural genetics and biotechnology delivered to your inbox.
glp menu logo outlined

Newsletter Subscription

* indicates required
Email Lists