Tweaking two genes in cotton doubles crop yields—and may do the same in wheat, rice and corn

white gold

One group of Texas Tech University researchers has found a way to double fiber yield for cotton in semi-arid areas like that of West Texas, where drought, heat and salinity are working against farmers.

Hong Zhang is a professor of Plant Molecular Biology and Plant Biotechnology at Texas Tech. A few years ago, his group published a paper showing that he could increase cotton yield by 35%-40% in dryland conditions.

But he has continued to work on different genetic changes to cotton that could lead to even better results, and a new paper published in “Plant Biotechnology Journal” in September details those results. During Zhang’s first year of experimenting with a new set of genetic modifications, the fiber yield from cotton crops was up 133%.

Follow the latest news and policy debates on agricultural biotech and biomedicine? Subscribe to our newsletter.

The research was conducted by overexpressing two different genes, the AVP1 and OsSIZ1.


Zhang said the results were highly consistent, and can be repeated, but he still hopes to do a larger field test. He said there is also no downside to turning up these genes – even if there is a great rainy season, the plants still produce more and would not produce less due to the gene modifications.

Related article:  Canada's demand for GMO Impossible Burger grows as consumers cut meat from diets

Cotton is king in West Texas, but Zhang said he believes the results can be applied to other crops, such as wheat, rice and corn. The two genes that were overexpressed are present in every plant.

Read the original post

Outbreak Daily Digest
Biotech Facts & Fallacies
GLP Podcasts
Infographic: Here’s where GM crops are grown around the world today

Infographic: Here’s where GM crops are grown around the world today

Do you know where biotech crops are grown in the world? This updated ISAAA infographics show where biotech crops were ...
News on human & agricultural genetics and biotechnology delivered to your inbox.
glp menu logo outlined

Newsletter Subscription

* indicates required
Email Lists
Send this to a friend