Microbes as sustainable fuel: A better way to make chemicals currently derived from oil and gas

Credit: Studio4dich/Shutterstock
Credit: Studio4dich/Shutterstock

A team of chemists from the University of California, Berkeley, and the University of Minnesota has now engineered microbes to make hydrocarbon chains that can be deoxygenated more easily and using less energy — basically just the sugar glucose that the bacteria eat, plus a little heat.

The process allows microbial production of a broad range of chemicals currently made from oil and gas — in particular, products like lubricants made from medium-chain hydrocarbons, which contain between eight and 10 carbon atoms in the chain.

Follow the latest news and policy debates on sustainable agriculture, biomedicine, and other ‘disruptive’ innovations. Subscribe to our newsletter.

“This is a general process for making target compounds, no matter what chain length they are,” [UC Berkeley chemistry professor Michelle] Chang said. “And you don’t have to engineer an enzyme system every time you want to change a functional group or the chain length or how branched it is.”

Despite their feat of metabolic engineering, Chang noted that the long-term and more sustainable goal would be to completely redesign processes for synthesizing industrial hydrocarbons, including plastics, so that they are optimized to use the types of chemicals that microbes normally produce, rather than altering microbial products to fit into existing synthetic processes.

This is an excerpt. Read the original post here.

{{ reviewsTotal }}{{ options.labels.singularReviewCountLabel }}
{{ reviewsTotal }}{{ options.labels.pluralReviewCountLabel }}
{{ options.labels.newReviewButton }}
{{ userData.canReview.message }}
skin microbiome x final

Infographic: Could gut bacteria help us diagnose and treat diseases? This is on the horizon thanks to CRISPR gene editing

Humans are never alone. Even in a room devoid of other people, they are always in the company of billions ...
glp menu logo outlined

Newsletter Subscription

* indicates required
Email Lists
glp menu logo outlined

Get news on human & agricultural genetics and biotechnology delivered to your inbox.