Bats evolved to fix DNA from damage caused by flight

[N]ow, thanks to our ability to sequence genomes, some researchers have provided a new picture of how bats manage to adapt to such distinctive lifestyles. The DNA sequences suggest that all bats share some adaptations that help them cope with the metabolic demands of flight, while individual species have other adaptations that help them handle echolocation and hibernation.

High metabolic exertion [read: flight] tends to produce oxygen radicals, which damage cellular components, including DNA. So, the authors tested whether the genes that are involved in maintaining DNA integrity showed signs of having undergone evolutionary selection (we’ve explained how to do that test in the past). Many of the genes involved in repairing DNA damage did show signs of selection, as did genes that help stop cells from dividing if they’ve picked up too much damage. Both species have also lost a gene that helps cells trigger an inflammatory response when they sense DNA outside of the cell’s nucleus.

View the original article here: Bats evolved to fix DNA from damage caused by flight

Outbreak
Outbreak Daily Digest
Biotech Facts & Fallacies
Talking Biotech
Genetics Unzipped
Infographic: What are mRNA COVID-19 vaccines and how do they work?

Infographic: What are mRNA COVID-19 vaccines and how do they work?

As of 1 December 2020, thirteen vaccines have reached the final stage of testing: where they are being given to ...
favicon

Environmental Working Group: EWG challenges safety of GMOs, food pesticide residues

Known by some as the "Environmental Worrying Group," EWG lobbies ...
m hansen

Michael Hansen: Architect of Consumers Union ongoing anti-GMO campaign

Michael K. Hansen (born 1956) is thought by critics to be ...
News on human & agricultural genetics and biotechnology delivered to your inbox.
glp menu logo outlined

Newsletter Subscription

Optional. Mail on special occasions.
Send this to a friend