The GLP is committed to full transparency. Download and review our just-released 2019 Annual Report.

Audio: How genetic engineering is creating flavors like vanilla, saffron and grapefruit

While the technology to evaluate the flavor molecules of a particular food have become increasingly sophisticated in the past century, the basic concept of synthetic flavor has remained unchanged. Until now. In this episode of Gastropod, molecular biologists explain how they’re designing yeasts to ferment the tastes of the future.

Today, advances in genetic engineering, combined with the growing consumer demand for natural flavors, are creating an intriguing new option for the world’s flavorists. In the past, the mention of “edible yeast” in the FDA definition of natural flavors typically referred to savory yeast extracts; now, designer yeasts are beginning to pump out vanilla, saffron, and even grapefruit flavors.

For this episode, Gastropod visited Ginkgo BioWorks, one of a new wave of companies redesigning yeasts to produce fragrance and flavor chemicals. As Christina Agapakis, a scientist, writer, and artist who recently joined Ginkgo’s staff, explained, the biology behind genetically modifying microbes to produce other, useful chemicals is not new. More than three decades ago, in 1978, biotech companies successfully inserted genes into bacteria to produce human insulin, meaning that diabetics need no longer depend on a close-enough version extracted from pig pancreases. In 1990, the FDA approved rennet made by inserting cow genes into E. coli bacteria; today, more than 90 percent of all cheese in the U.S. and U.K. is made using this bioengineered product, rather than natural rennet found in the stomach linings of calves.

What is new, Agapakis told Gastropod, is “the ability to create flavors.”

The GLP aggregated and excerpted this blog/article to reflect the diversity of news, opinion and analysis. Read full, original post: Genetically-engineered yeast is the future of flavor

The GLP aggregated and excerpted this article to reflect the diversity of news, opinion, and analysis. Click the link above to read the full, original article.
News on human & agricultural genetics and biotechnology delivered to your inbox.
Optional. Mail on special occasions.

Send this to a friend