The GLP is committed to full transparency. Download and review our Annual Report.

Can ‘gene drives’ for crop pests work in the real world?

| | April 26, 2018

The spotted wing fruit fly is one of the world’s major crop destroyers. Scientifically known as Drosophila suzukii, this peppercorn-size insect uses a serrated organ to lay its eggs inside—rather than on top of—unripe fruit, damaging raspberry, strawberry, and cherry crops across the globe. Now, scientists may have found a way to fight this pest using a strategy called gene drive, which can spread genes rapidly through a population. When coupled with a lethal “cargo gene,” the approach could kill the flies in their tracks when exposed to a specific chemical compound, or just simple summertime heat.

[E]xperts say [Anna] Buchman’s team will need to show that its version of Medea can stick around in a population for a long period of time—something that’s still unclear, says Max Scott, a geneticist at North Carolina State University in Raleigh. He points out that Buchman’s version of the gene drive “didn’t work anywhere near as well” as it did in [Bruce] Hay’s original work, because Medea disappeared from the flies in two long-term experiments and some wild D. suzukii flies appeared immune to Medea’s toxin. “To get something that will actually work in the field presents a pretty big challenge.”

Read full, original post: Can a genetic weapon combat one of the world’s major crop destroyers?

The GLP aggregated and excerpted this article to reflect the diversity of news, opinion, and analysis. Click the link above to read the full, original article.
News on human & agricultural genetics and biotechnology delivered to your inbox.
Optional. Mail on special occasions.

Send this to a friend