‘Like finding missing puzzle pieces’: Sequenced genome of 15 wheat varieties could speed search for heartier crops

Credit: Alamy
Credit: Alamy
[Researchers at the University of Saskatchewan have] sequenced the genomes for 15 wheat varieties representing breeding programmes around the world.

The landmark discovery will enable scientists and breeders to identify influential genes for improved yield, pest resistance and other important crop traits much more quickly.

The research results, published in Nature, provide what the research team has called the most comprehensive atlas of wheat genome sequences ever reported. The 10+ Genome Project collaboration involved more than 95 scientists from universities and institutes across Canada, Switzerland, Germany, Japan, the UK, Saudi Arabia, Mexico, Israel, Australia and the US.

“It’s like finding the missing pieces for your favourite puzzle that you have been working on for decades,” said project leader Curtis Pozniak, wheat breeder and director of the USask Crop Development Centre (CDC). “By having many complete gene assemblies available, we can now help solve the huge puzzle that is the massive wheat pan-genome and usher in a new era for wheat discovery and breeding.”

Follow the latest news and policy debates on sustainable agriculture, biomedicine, and other ‘disruptive’ innovations. Subscribe to our newsletter.

Scientific groups across the global wheat community are expected to use the new resource to identify genes linked to in-demand traits, such as pest and diseases resistance, which will accelerate breeding efficiency.

“This resource enables us to more precisely control breeding to increase the rate of wheat improvement for the benefit of farmers and consumers, and meet future food demands,” Pozniak added.

Read the original post

{{ reviewsTotal }}{{ options.labels.singularReviewCountLabel }}
{{ reviewsTotal }}{{ options.labels.pluralReviewCountLabel }}
{{ options.labels.newReviewButton }}
{{ userData.canReview.message }}
skin microbiome x final

Infographic: Could gut bacteria help us diagnose and treat diseases? This is on the horizon thanks to CRISPR gene editing

Humans are never alone. Even in a room devoid of other people, they are always in the company of billions ...
glp menu logo outlined

Newsletter Subscription

* indicates required
Email Lists
glp menu logo outlined

Get news on human & agricultural genetics and biotechnology delivered to your inbox.