CRISPR climate game changer: What if we engineered rice to dramatically cut methane emissions?

Flooded rice cultivation contributes significantly to GHG emissions. Credit: Shutterstock
Flooded rice cultivation contributes significantly to GHG emissions. Credit: Shutterstock

The complexity of microbial communities has been a major obstacle to discovering technologies that can prevent diseases and improve agriculture. It’s a critical step toward curbing methane, a harmful greenhouse gas that is emitted during rice production.

Follow the latest news and policy debates on sustainable agriculture, biomedicine, and other ‘disruptive’ innovations. Subscribe to our newsletter.

The crop is grown in flooded fields. That water cuts off oxygen to the soil, which allows methane-producing microbes to thrive: Rice production is responsible for as much as 34 million tons of methane a year, or about 2% of greenhouse-gas emissions. China and India make up half that total.

Rice fields are like smokestacks for soil methane, and to shut down those emissions, scientists first need to understand the microbes. The trouble has been that culturing microbial communities and tinkering with them in a lab with traditional tools “could take years or might fail altogether,” IGI authors write. Their new paper demonstrates that using a Crispr-based system can “accelerate this process to weeks.”

Timothy Searchinger, a senior research scholar at Princeton University’s Center for Policy Research on Energy and the Environment, welcomes progress toward a high-ambition, high-reward genetic-engineering breakthrough in concert with proven real-world techniques—the topic of a policy paper he issued in November.

This is an excerpt. Read the original post here.

{{ reviewsTotal }}{{ options.labels.singularReviewCountLabel }}
{{ reviewsTotal }}{{ options.labels.pluralReviewCountLabel }}
{{ options.labels.newReviewButton }}
{{ userData.canReview.message }}
screenshot at  pm

Are pesticide residues on food something to worry about?

In 1962, Rachel Carson’s Silent Spring drew attention to pesticides and their possible dangers to humans, birds, mammals and the ...
glp menu logo outlined

Newsletter Subscription

* indicates required
Email Lists
glp menu logo outlined

Get news on human & agricultural genetics and biotechnology delivered to your inbox.