The GLP is committed to full transparency. Download and review our just-released 2019 Annual Report.

CRISPR used to make bigger tomatoes without editing genes

| | December 12, 2017

Global crop yields are increasingly vulnerable to changing climate and air quality. To combat future environmental threats and increased population growth, scientists are seeking new ways to engineer plants that can withstand harsh and unpredictable environments, and produce more food.

The genetic engineering of crops is not a new concept—for millennia, farmers attempted to cross plant varieties to improve flavor and yield.

Daniel Rodríguez-Leal, a 2016 Pew Latin American fellow working with Zachary Lippman at Cold Spring Harbor Laboratory, is harnessing the power of genome editing to improve crops. Reported in the September issue of the journal Cell, Rodríguez-Leal utilized the CRISPR genome-editing technology to manipulate sequences within the promotor of genes that are important to yield. Promoters are regions of DNA adjacent to a gene, which can act like a dimmer switch to control when, where, and at what level these genes get activated during plant development.

By making small changes to these regions, Rodríguez-Leal was able to rapidly generate a myriad of variants important to the overall yield of tomatoes: plant architecture and shape, and fruit size. The team discovered that by using CRISPR to modify the promoters instead of the genes, they were able to fine-tune the output of yield genes.

Read full, original post: Genome Editing Could Stimulate Crop Yields

The GLP aggregated and excerpted this article to reflect the diversity of news, opinion, and analysis. Click the link above to read the full, original article.
News on human & agricultural genetics and biotechnology delivered to your inbox.
Optional. Mail on special occasions.

Send this to a friend