How artificial intelligence (AI) can help prevent the next coronavirus from jumping from animals to humans

Credit: Council of Europe
Credit: Council of Europe

New research by scientists at the University of Glasgow suggests that machine learning (ML) models developed using viral genomes can be harnessed to predict the likelihood that any animal-infecting virus will migrate to infect humans, given biologically relevant exposure.

Most emerging infectious diseases of humans—such as COVID-19—are caused by viruses originating from other animal species, so identifying high-risk, potentially animal-to-human jumping zoonotic viruses earlier can help to improve research and surveillance priorities.

Follow the latest news and policy debates on sustainable agriculture, biomedicine, and other ‘disruptive’ innovations. Subscribe to our newsletter.

To develop more accurate machine learning models using viral genome sequences, the researchers first compiled a dataset of 861 virus species from 36 families. They next built machine learning models, which assigned a probability of human infection based on virus taxonomy and/or relatedness to known human-infecting viruses.

As the authors concluded,

Independently of the mechanisms involved, the performance of our models shows how increasingly ubiquitous and low-cost genome sequence data can inform decisions on virus research and surveillance priorities at the earliest stage of virus discovery with virtually no extra financial or time investment… Genome-based zoonotic risk assessment provides a rapid, low-cost approach to enable evidence-driven virus surveillance and increases the feasibility of downstream biological and ecological characterization of viruses.

This is an excerpt. Read the original post here.

{{ reviewsTotal }}{{ options.labels.singularReviewCountLabel }}
{{ reviewsTotal }}{{ options.labels.pluralReviewCountLabel }}
{{ options.labels.newReviewButton }}
{{ userData.canReview.message }}
skin microbiome x final

Infographic: Could gut bacteria help us diagnose and treat diseases? This is on the horizon thanks to CRISPR gene editing

Humans are never alone. Even in a room devoid of other people, they are always in the company of billions ...
glp menu logo outlined

Newsletter Subscription

* indicates required
Email Lists
glp menu logo outlined

Get news on human & agricultural genetics and biotechnology delivered to your inbox.